#### "Development of a Cross Border Inventories in the Midwest for the US and Canada

Scott Edick,
Michigan DEQ
Mark Janssen,
Lake Michigan Air Directors

Emissions Inventory Conference Baltimore, Maryland April 14-17, 2009

#### Today's Subjects

- Framework for LADCO work on Canadian Inventories.
- Conversion of NPRI inventory to NIF3.0
- Canadian use of NEI as basis for modeling inventories.
- Where we go from here.



#### Midwest/Canada Coordination

- Spring 2007 Identification of significant problems in ORL version of Canadian Inventory.
  - HBM&S Flin Flon, INCO Thompson and Sudbury, and Falconbridge.
- Stack parameters missing or set to defaults. Resulted in emissions being lost or put in surface cell for 3 of the top 6 SO2 sources in US/CA
- Fall 2007 Ontario Ministry of Environment and LADCO begin to work together to understand trans boundary issues.

#### Understanding Data Flow



#### Understanding Data Flow



- Data Inputs
  - Point Source data from NPRI Canada\_2005\_mdb
    - Address
    - ChemList
    - Facility
    - Stacks
    - SubsRele
    - SubsTran



#### **Great Documentation in NPRI**

- Data Inputs continued
  - Geographic Data
    - GEOLocation from NPRI\_GEO.mdb
    - Province/Territory default coordinates from GNSS
  - NIF inventory for assigning SCCs to facilities
  - Cross-referenced list of pollutants of interest

- Move Access data to PostgreSQL
  - Create empty tables in PostgreSQL mirroring NPRI and GEO tables for desired subset of fields
  - Connect Access to PostgreSQL via ODBC
  - Execute Access Append Queries to populate tables in PostgresSQL with NPRI and GEOLocation data
- Load reference data into PostgreSQL
  - Pollutant xref
  - Province and Territory data

- Load NIF tables SI, EP, EM; build SCC xref from:
  - SCC with max(VOC, PM\*) emissions for each NAICS
    - 34.7% of VOC and PM25-PRI
  - SCC with max(VOC, PM\*) emissions for each SIC
    - 63.2% of VOC and PM25-PRI
  - SCC most frequently used by facilities for each NAICS
    - 1 / 358347 tons VOC and PM25-PRI
  - SCC most frequently used by facilities for each SIC
    - 1.7% of VOC and PM25-PRI
  - AIRROA\_V emissions SCC 50100401
    - 0.4 % of VOC and PM25-PRI
  - Else SCC = "99999999"
    - 49 / 358347 tons VOC and PM25-PRI

- Processing
  - bash/psql script creates and populates NIF tables
  - Noteworthy conversions/alterations include:
    - SubsTran emissions associated with Stack data
    - AIRSTO\_V, AIRFUG\_V, AIRSPI\_V, AIROTH\_V, plus any AIRSTA\_V not accounted for in SubsTran aggregated and associated with single, ground level "stack"
    - SCFIPS code choices
      - 2-char abbr, FIPS codes "CA01, ... CA14", EMS
      - Alberta|AB|48 0|CA01|54.9916666|-114.3766666|NAD83

- Processing continued
  - Noteworthy conversions/alterations continued
    - Create monthly emissions records where SubsRele (rele\_jan + rele\_feb + ... + rele\_dec) = 100
    - Otherwise create annual emissions and rely on quarterly percentages from Facility
    - Days/week is set to the total of Facility.Days\_Sun, . . . Facility.Days\_Sat that are set to true
    - Hours are 24/16/08 if Facility. Hours\_XX is true, else hours = round(Hours\_Ave)
    - Convert metric tons, meters, deg. C to tons, feet, deg. F

- Processing continued
  - At this point, have a NIF inventory in PostgreSQL
  - Can apply fixes, such as
    - INCO stacks (fixed in latest NPRI)
    - Stack temp > 1250 C.
  - Can create Access database via ODBC make table queries
  - Can generate fixed-width text export

- Advantages
  - Better temporal and vertical resolution over ORL files
  - Can use NIF-based diagnostic and processing tools
  - Iterability
    - Can easily regenerate entire inventory as NPRI is updated
    - Can incorporate fix sets at head or tail of process
    - Fixes can be easily documented/reverted

- Areas to be improved
  - Not taking advantage of speciation/SCC assignment
  - Upstream Oil and Gas



#### Incorporating US RPO data into Canadian Process







#### Differences Examined

#### Emissions in Thousands of Tons/Year

| Category                                                        | Pollutant | Canada | LADCO |
|-----------------------------------------------------------------|-----------|--------|-------|
| Cattle                                                          | NH3       | 177    | 60    |
| Dairy                                                           | NH3       | 0      | 45    |
| Poultry                                                         | NH3       | 54     | 37    |
| Swine                                                           | NH3       | 135    | 33    |
| Fertilizer                                                      | NH3       | 177    | 15    |
| POTW                                                            | NH3       | .2     | 15    |
| Large Bore Diesel Engines                                       | NOX       | 36     | 0     |
| Aircraft                                                        | NOX       | 57     | 10    |
| Dust(LADCO Adds Transport Fractions)                            | PM2.5     | 145    | .2    |
| Solvent Categories joined in Canada, Do they match the US list? | VOC       |        |       |
| Graphic Arts                                                    | VOC       | 0      | 6     |
| Beef Cattle                                                     | VOC       | 327    | 0     |
| Pesticides(2805002000)                                          | VOC       | 264    | 64    |
| Ag Equipment (SO2/NOX) ratio lower than US                      | SO2       |        |       |

#### Where We Go From Here?

- LADCO will continue to use NPRI derived Inventory.
- Process stalled over EC/OME use of NEI based modeling inventory.
- Unlikely that new NEI process will fix temporal problems.